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Abstract Forecasting and monitoring of rainfall values are increasingly important for de-

creasing economic loss caused by flash floods. Based on statistical learning theory, support

vector regression (SVR) has been used to deal with forecasting problems. Performing struc-

tural risk minimization rather than minimizing the training errors, SVR algorithms have better

generalization ability than the conventional artificial neural networks. The objective of this

investigation is to examine the feasibility and applicability of SVR in forecasting volumes of

rainfall during typhoon seasons. In addition, Simulated Annealing (SA) algorithms are em-

ployed to choose parameters of the SVR model. Subsequently, rainfall values during typhoon

periods in Taiwan’s Wu–Tu watershed are used to demonstrate the forecasting performance

of the proposed model. The simulation results show that the proposed SVRSA model is a

promising alternative in forecasting amounts of rainfall during typhoon seasons.

Keywords Rainfall forecasting . Support vector regression . Simulated annealing

algorithms . Water resources

1. Introduction

In Taiwan, heavy rains in the summer are typically associated with the southwest monsoon,

monsoon trough and tropical cyclones. Unanticipated flash floods, particularly with high peak

discharges produced by severe rainfalls, are the most destructive natural hazard threatening

human lives and properties. To provide correct and prompt information containing the spatial

and temporal distribution of rainfalls is the best way to avoid loss of lives and properties

(Brath et al., 1988; Lettenmaier and Wood, 1993). However, rainfall is one of the most
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difficult meteorological variables in the hydrologic cycle. The formation mechanism and

forecast of rainfall involve a rather complex physics that has not been completely understood

so far (Andrieu et al., 1996; Bustamante et al., 1999; French et al., 1992). To forecast rainfall

accurately is a challenge for hydrologists and water resource engineers.

Generally, rainfall forecast technologies can be classified into two categories, namely the

physical modeling approach and the pattern recognition methodology (Luk et al., 2001).

The physical modeling approaches are designed to approximate the physical mechanism

of hydrologic processes. In addition, the physical modeling approaches usually offer the

possibility of identifying processes or improving our knowledge in a specific catchment.

These approaches are applied particularly when the hydrological data appear non-stationary

(Druce, 2001; Kitanidis and Bras, 1980; Vieux et al., 2004). However, the physical modeling

approaches for rainfall forecasting may not be feasible due to the significant calibration data

both in space and time (Yapo et al., 1996; Luk et al., 2001).

The pattern recognition methodology formulates the relationships between inputs and

outputs without considering the physical structure processes. Developed by Box and Jenkins

(1976), the autoregressive moving average with exogenous inputs (ARMAX) models have

been one of the most popular approaches to time series forecasting. ARMAX models have

been applied in hydrologic forecasting and obtained satisfactory performances in the past two

decades (Bras and Rodriguez-Iturbe, 1985; Salas et al, 1980). The artificial neural network

(ANN) is regarded as a powerful mathematical model for achieving the forecast of rainfall

volume in time series and has become popular in recent years. French et al. (1992) employed

ANN to build a rainfall simulation model and provided accurate rainfall information. Luk

et al. (2000) employed ANN to forecast the temporal and spatial distribution of short-term

rainfall for an urban catchment. Several ANN models with different orders of lag and spatial

inputs were presented to compare the forecast accuracy. Luk et al. (2001) compared the

performance of three ANN models, namely multilayer feedforward neural network, Elman’s

recurrent neural network and time-delay neural network, in forecasting the spatial distribution

of rainfall for an urban catchment. They reported that the model with lower lag can yield

more accurate forecast results. Valverde Ramı́rez et al. (2005) developed a feed-forward

neural network with resilient propagation learning algorithm to forecast daily rainfall in São

Paulo region, Brazil. The numerical results indicated that the proposed model is superior

to a multiple linear regression model in terms of forecasting accuracy indices. Pan and

Wang (2004) employed the state space neural network (SSNN) model to forecast short term

rainfall-runoff in Taiwan’s Wu-Tu watershed. The SSNN was used to strengthen the linkage

between weights and networks as well as to interchange the network states into a time-variant

model. Empirical results revealed that the SSNN model is suitable for hydrological forecasts.

Lin and Chen (2004) applied the radial basis function network (RBFN) to rainfall-runoff

forecasting in Taiwan’s Fei-Tsui reservoir watershed. They claimed that the RBFN model

is feasible in explaining relationships between rainfall and runoff. Chiang et al. (2004) used

back propagation neural networks, trained by traditional conjugate gradient (CG) algorithm

and real-time recurrent learning (RTRL) algorithm, respectively, to forecast the rainfall-

runoff in Taiwan’s Lan-Yang River. The CG algorithm is used for static networks and the

RTRL algorithm is for dynamic networks. Their investigation indicated that RTRL algorithms

with the capability of updating dynamic data continuously outperformed CG algorithms.

Castellano-Méndez et al. (2004) presented a multilayer perceptron neural network with one

hidden layer to model the behavior of the runoff. The simulation results showed that the

proposed neural network had more accurate forecasting results than the Box-Jenkins models.

Support vector machines (SVM) were originally developed to solve pattern recognition and

classification problems. With the introduction of Vapnik’s ε-insensitive loss function, support
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vector machines have been extended to solve nonlinear regression estimation problems and

have been successfully employed to solve forecasting problems in many fields. Tay and Cao

(2001) applied SVM to forecasting financial time series. Their numerical results demonstrated

that SVM is superior to a multi-layer back-propagation neural network in financial time series

forecasting. Wang et al. (2003) used SVM to predict air quality. They reported that SVM

outperforms conventional radial basis function networks. Cao and Gu (2002) presented a

dynamic SVM model for solving non-stationary time series problems. Their experimental

results indicated that DSVM outperforms standard SVM in forecasting non-stationary time

series. In the same year, Tay and Cao (2002) developed a C-ascending SVM to model

non-stationary financial time series. Their experimental results showed that the C-ascending

SVM with sample data of actual orders consistently outperform the standard SVM. Cao

(2003) applied SVM experts to forecasting time series. Generalized SVM experts have a two-

stage neural network architecture. The numerical results demonstrated that SVM experts can

achieve better generalization than single SVM models. Mohandes et al. (2004) used SVM to

predict wind speed. Their experimental results indicated that the SVM model outperformed

multilayer perceptron neural networks as measured by root mean square errors. Pai and

Lin (2004a) used SVM to forecast production values of the machinery industry in Taiwan.

They reported that SVM performed better than the seasonal autoregressive integrated moving

average model and the general regression neural network model. Pai and Lin (2004b) proposed

a hybrid model with the strength of an autoregressive integrated moving average model and the

SVM model for forecasting the stock prices. By using 10 stocks to examine the performance,

numerical results show that the proposed hybrid model provided more accurate forecasting

results than the autoregressive integrated moving average model and random walk model.

The selection of the three parameters (σ , C , and ε) in a SVR model influences the fore-

casting accuracy significantly. Owing to a lack of structured ways in determining the three

free parameters in the SVR model, the simulated annealing algorithms are employed to de-

termine the values of the three parameters in the SVR model. In this investigation, a SVR

model with SA is proposed to forecast rainfall of Wu-Tu Watershed in northern Taiwan. The

rest of the paper is organized as follows. Section 2 introduces the basic concept of the SVR

model. Section 3 presents the SA that is used to select the parameters of the SVR model.

Three forecast models for comparing the forecasting performance with the proposed model

are addressed in Section four. Section 5 illustrates a numerical example to demonstrate the

forecasting performance of the proposed models. Conclusions are finally made in Section 6.

2. Support vector regression

The basic concept of the support vector regression is to map nonlinearly the original data x
into a higher dimensional feature space. Hence, given a set of data G = {(xi , ai )}N

i=1 (where

xi is the input vector; ai is the actual value, and N is the total number of data patterns), the

SVR function is

f = g(x) = wψ(xi ) + b (1)

where ψ(xi ) is the feature of inputs, and both w and b are coefficients. The coefficients (w

and b) are estimated by minimizing the following regularized risk function;

r ( f ) = C
1

N

N∑
i=1

�ε(ai , fi ) + 1

2
‖w‖2 (2)

Springer



498 Water Resour Manage (2007) 21:495–513

where

�ε(ai , fi ) =
{

0 if |ai − fi | ≤ ε

|ai − fi | − ε otherwise
(3)

and C and ε are prescribed parameters. In Equation (2), �ε(ai , fi ) is called the ε-insensitive

loss function. The loss equals zero if the forecasted value is within the ε-tube (Equation

(3)). The second term, 1
2
‖w‖2, measures the flatness (function curvature) of the function.

Therefore, C is considered to specify the trade-off between the empirical risk and the model

flatness. Both C and ε are user-determined parameters. Two positive slack variables ξ and

ξ ∗, which represent the distance from actual values to the corresponding boundary values

of ε-tube, respectively are introduced. Then, Equation (2) is transformed into the following

constrained form;

Minimize

r (w, ξ, ξ ∗) = 1

2
‖w‖2 + C

(
N∑

i=1

(ξi + ξ ∗
i )

)
(4)

with the constraints,

wψ(xi ) + b − ai ≤ ε + ξ ∗
i , i = 1, 2 . . . , N

ai − wψ(xi ) − b ≤ ε + ξi , i = 1, 2 . . . , N

ξi , ξ
∗
i ≥ 0, i = 1, 2 . . . , N

This constrained optimization problem is solved using the following primal Lagrangian

form:

L(w, b, ξ, ξ ∗, αi , α
∗
i , βi , β

∗
i )

= 1

2
‖w‖2 + C

(
N∑

i=1

(ξi + ξ ∗
i )

)
−

N∑
i=1

βi [wψ(xi ) + b − ai + ε + ξi ]

−
N∑

i=1

β∗
i [ai − wψ(xi ) − b + ε + ξ ∗

i ] −
N∑

i=1

(
αiξi + α∗

i ξ ∗
i

)
(5)

Equation (5) is minimized with respect to primal variables w, b, ξ and ξ ∗, and maximized

with respect to nonnegative Lagrangian multipliers αi , α∗
i , βi and β∗

i , Therefore, Equations.

(6)–(9) are obtained.

∂L

∂w
= w −

N∑
i=1

(βi − β∗
i )ψ(xi ) = 0 (6)

∂L

∂b
=

N∑
i=1

(β∗
i − βi ) = 0 (7)

∂L

∂ξi
= C − βi − αi = 0 (8)

∂L

∂ξ ∗
i

= C − β∗
i − α∗

i = 0 (9)
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Then, Karush–Kuhn–Tucker conditions are applied to the regression, and Equation (4)

thus yields the dual Lagrangian by substituting Equations (6)–(9) into Equation (5), more

detailed calculation is shown as Equation (10).

L = 1

2
‖w‖2 + C

(
N∑

i=1

(ξi + ξ ∗
i )

)
− w

N∑
i=1

βiψ(xi ) − b
N∑

i=1

βi +
N∑

i=1

βi ai − ε

N∑
i=1

βi

−
N∑

i=1

βiξi −
N∑

i=1

β∗
i ai + w

N∑
i=1

β∗
i ψ(xi ) + b

N∑
i=1

β∗
i − ε

N∑
i=1

β∗
i

−
N∑

i=1

β∗
i ξ ∗

i −
N∑

i=1

αiξi −
N∑

i=1

α∗
i ξ ∗

i

= 1

2
‖w‖2 + C

(
N∑

i=1

(ξi + ξ ∗
i )

)
− w

(
N∑

i=1

ψ(xi )(βi − β∗
i )

)

−ε

N∑
i=1

(βi + β∗
i ) +

N∑
i=1

ai (βi − β∗
i ) + b

N∑
i=1

(β∗
i − βi ) −

N∑
i=1

βiξi −
N∑

i=1

αiξi

−
N∑

i=1

β∗
i ξ ∗

i −
N∑

i=1

α∗
i ξ ∗

i

= 1

2
‖w‖2 + C

(
N∑

i=1

(ξi + ξ ∗
i )

)
− w · w − ε

N∑
i=1

(βi + β∗
i )

+
N∑

i=1

ai (βi − β∗
i ) −

N∑
i=1

(C − αi )ξi −
N∑

i=1

αiξi −
N∑

i=1

(C − α∗
i )ξ ∗

i −
N∑

i=1

α∗
i ξ ∗

i

= −1

2
‖w‖2 + C

(
N∑

i=1

(ξi + ξ ∗
i )

)
− ε

N∑
i=1

(βi + β∗
i ) +

N∑
i=1

ai (βi − β∗
i )

−
N∑

i=1

Cξi −
N∑

i=1

Cξ ∗
i

= −1

2
‖w‖2 + C

(
N∑

i=1

(ξi + ξ ∗
i )

)
− ε

N∑
i=1

(βi + β∗
i ) +

N∑
i=1

ai (βi − β∗
i )

−C

(
N∑

i=1

(ξi + ξ ∗
i )

)

= −1

2

N∑
i=1

N∑
j=1

(αi − α∗
i )(βi − β∗

i )ψ(xi )ψ(x j ) − ε

N∑
i=1

(βi + β∗
i ) +

N∑
i=1

ai (βi − β∗
i )

(10)
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Then, the dual Lagrangian, Equation (11), is obtained when kernel function is K (xi , x j ) =
ψ(xi )ψ(x j ),

ϑ(βi , β
∗
i ) =

N∑
i=1

ai (βi − β∗
i ) − ε

N∑
i=1

(βi + β∗
i ) − 1

2

N∑
i=1

N∑
j=1

(βi − β∗
i ) (β j − β∗

j )K (xi , x j )

(11)

subject to the constraints,

N∑
i=1

(βi − β∗
i ) = 0

0 ≤ βi ≤ C, i = 1, 2, · · · , N

0 ≤ β∗
i ≤ C, i = 1, 2, · · · , N

The Lagrange multipliers in Equation (11) satisfy the equality βi ∗ β∗
i = 0. The Lagrange

multipliers βi and β∗
i , are calculated and an optimal desired weight vector of the regression

hyperplane is,

w∗ =
N∑

i=1

(βi − β∗
i )ψ(xi ) (12)

Finally, Equation (12) is then substituted into Equation (1), and the regression function is

obtained as Equation (13).

g(x, β, β∗) =
N∑

i=1

(βi − β∗
i )K (x, xi ) + b (13)

Here, K (xi , x j ) is called the Kernel function. The value of the Kernel equals the inner

product of two vectors, xi and x j , in the feature space ψ(xi ) and ψ(x j ), respectively; that is,

K (xi , x j ) = ψ(xi ) ∗ ψ(x j ). Any function that meets Mercer’s condition (Vapink, 1995) can

be used as the Kernel function. In this work, the Gaussian function, exp (− 1
2

∗ (
‖xi −x j ‖

σ
)2), is

used in the SVR model.

The selection of the three parameters, σ , ε and C , of a SVR model influence the accuracy

of forecasting. However, structural methods for confirming efficient selection of parameters

efficiently are lacking. Therefore, simulated annealing algorithm (SA) is used in the proposed

SVR model to optimize parameter selection.

3. Simulated annealing algorithms in selecting parameters of the SVR model

The simulated annealing algorithm is an optimization technique, analogous to the annealing

process of material physics. Boltzmann (Cercignani, 1988) pointed out if the system is in

thermal equilibrium at a temperature T, then the probability PT (s) of the system being in a

given state s is given by the Boltzmann distribution:

PT (s) = exp (−E(s)/kT )∑
w∈S exp (−E(w)/kT )

(14)
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where E(s) denotes the energy of state s (The state is defined as the SVR forecasting error

in each iteration here); k represents the Boltzmann constant and S is the set of all possible

states. However, Equation (14) does not contain information on how a fluid reaches thermal

equilibrium at a given temperature. Metropolis et al. (1953) developed an algorithm that

simulates the process of Boltzmann. The Metropolis algorithm is summarized as follows.

When the system is in original state sold with energy E(sold), a randomly selected atom is

perturbed, resulting in a state snew with energyE(snew). This new state is either accepted or

rejected depending on the Metropolis criterion: if E(snew) ≤ E(sold), then the new sate is

automatically accepted; in contrast, if E(snew) > E(sold), then the probability of accepting

the new state is given by the following probability function.

P(accept snew) = exp

(
− E(sold) − E(snew)

kT

)
(15)

According to the studies of Kirkpatrick et al. (1983), it is claimed that the Metropolis approach

is conducted for each temperature on the annealing schedule until thermal equilibrium is

reached. Additionally, a prerequisite for applying SA is that a given set of the multiple

variables defines a unique system state, for which the objective function can be calculated.

4. SA algorithm procedure and flowchart

The procedure of SA algorithm is described as follows and the flowchart is shown as Figure 1.

Step 1 (Initialization): Set upper bounds of the three SVR positive parameters, σ , C, and ε.

Then, generate and feed the initial values of the three parameters into the SVR model.

The forecasting error is defined as the system state (E). Here, the initial state (E0) is

obtained.

Step 2 (Provisional state): Make a random move to change the existing system state to a

provisional state. Another set of three positive parameters is generated in this stage.

Step 3 (Acceptance tests): The following equation is employed to determine the acceptance

or rejection of the provisional state (Metropolis et al., 1953).

⎧⎨⎩
Accept the provisional state, ifE(snew)> E(sold), and p< P(accept snew), 0 ≤ p≤1.

Accept the provisional state, if E(snew) ≤ E(sold)

Reject the provisional state, otherwise

(16)

In Equation (16), the p is a random number for determining the acceptance of the

provisional state. If the provisional state is accepted, then set the provisional state as

the current state.

Step 4 (Incumbent solutions): If the provisional state is not accepted, then return to Step 2.

Furthermore, if the current state is not superior to the system state, then repeat Steps

2 and 3 until the current state is superior to the system state, and set the current state

as the new system state. Previous studies (Kirkpatrick et al., 1983; Van Laarhoven

and Aarts, 1987) indicated that the maximum number of loops (Nsa) is 100d to avoid

infinitely repeated loops, where d denotes the problem dimension. In this investigation,

three parameters (σ , C, and ε) are used to determine the system states. Therefore, Nsa

is set to be 300.
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Fig. 1 Simulated annealing
flowchart
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Step 5 (Temperature reduction): After the new system state is obtained, reduce the temper-

ature. The new temperature reduction is obtained by the Equation (17):

New temperature = (Current temperature ) × ρ, where 0 < ρ < 1 (17)

(17) ρ is set to be 0.9 in this study (Dekkers and Aarts, 1991). If the pre-determined tem-

perature is reached, then stop the algorithm and the latest state is an approximate optimal

solution. Otherwise, go to Step 2.

In the investigation, the normalized mean squared error measure (NMSE), shown as

Equation (18), serves as the criterion for identifying suitable parameters for use in the SVRSA

model

NMSE = 1

nδ2

n∑
i=1

(ai − fi )
2 (18)

where δ2 = 1
n−1

∑n
i=1 (ai − ā)2; n is the number of forecasting periods; ai is the actual

rainfall depth value at period i ; ā denotes the mean of the actual rainfall depth value; and f i

is the forecasting rainfall depth value of Wu-Tu watershed at period i .

5. Models for comparing forecast performance

In this investigation three models are employed for comparing the forecasting accuracy with

the proposed SVRSA model. The first model used is the Holt-Winters (HW) method (Holt,

1957; Winter, 1960). The Holt-Winters method is an extension of exponentially weighted

moving average procedure. The exponentially weighted moving average approach forecasts

future values based on past observations, and places more weight on the recent observations.

The Holt-Winters method smoothes the trend values separately with two smoothing coeffi-

cients (with values between 0 and 1) and incorporates an explicit linear trend in the forecast.

The approach of Holt -Winter linear exponential smoothing is as follows:

st = αat + (1 − α) (st−1 + bt−1) (19)

bt = β(st − st−1) + (1 − β) bt−1 (20)

ft = st + ibt (21)

where at is the actual value at time t ; st is the smoothed estimate at time t ; bt is the trend

value at time t ; α is the level smoothing coefficient; and β is the trend smoothing coefficient.

Equation (19) lets the actual value be smoothed in a recursive manner by weighting the

current level (α), and then adjusts st directly for the trend of the previous period, bt−1, by

adding it to the last smoothed value, st−1. This helps to eliminate the lag and brings st to the

approximate base of the current data value.

Equation (20) updates the trend, which is expressed as the difference between the last two

smoothed values. It modifies the trend by smoothing with β in the last period (st − st−1), and

adding that to the previous estimate of the trend multiplied by (1 − β).

Equation (21) is used to forecast ahead. The trend, bt , is multiplied by the number of

periods ahead to be forecast, i , and added to the base value, st . The forecast error (et ) is
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defined as the actual value minus the forecast (fitted) value for time period t, that is:

et = at − ft (22)

The forecast error is assumed to be an independent random variable with zero mean and

constant variance. Values of smoothing coefficients, α and β, are determined to minimize

the forecast NMSE.

The second model used for comparing the forecast accuracy is the seasonal Holt and

Winters’ linear exponential smoothing (SHW) approach. The Holt-Winters method can not

be extended to accommodate additive seasonality if the magnitude of the seasonal effects

does not change with the series, or multiplicative seasonality if the amplitude of the seasonal

pattern changes over time. The forecast for seasonal Holt and Winters’ linear exponential

smoothing is as follows:

st = α
at

It−L
+ (1 − α) (st−1 + bt−1) (23)

bt = β(st − st−1) + (1 − β) bt−1 (24)

It = γ
at

st
+ (1 − γ )It−L (25)

ft = (st + ibt )It−L+i (26)

where L is the length of seasonality; I is the seasonal adjustment factor; and γ is the seasonal

adjustment coefficient.

Equation (23) differs slightly from Equation (24) in that the first term is divided by the

seasonal numberIt−L ; this is done to deseasonalize at (eliminate seasonal fluctuations from

at ). Equation (25) is comparable to a seasonal index that is found as a ratio of current

values of the series, at , divided by the smoothed value for the series, st . If at is larger

than st , the ratio will be greater than 1, else, the ratio will be less than 1. in order to

smooth the randomness of at , Equation (25) weights the newly computed seasonal fac-

tor with γ and the most recent seasonal number corresponding to the same season with

(1 − γ ).

The third mode is the recurrent neural network (RNN) model. The main concept of

recurrent neural networks is that links may be established within the layers of any feed-

forward neural network. In the RNN model, every unit is considered as the output of the

network and provides the adjusted information as input in furthermore training process

(Kechriotis et al., 1994). RNN models are widely used in time series forecasting. Elman

(1990), Jordan (1987), and Williams and Zipser (1989) had developed three different RNN

models to solve nonlinear adaptive filtering, pattern recognition, and forecasting problems.

In this investigation, the Elman network is adopted as a recurrent neural network framework.

The Elman network is constructed as a regular feed-forward network (Elman, 1990). Figure 2

show the architecture of an Elman network. All neurons in one layer are connected with all

neurons in the next layer except the context layer. A context layer is special case of a hidden

layer. Interactions only happen between neurons of the hidden layer and the context layer. For

an Elman network with P inputs and H hidden neurons, the output of the n th neuron, fn(t), is

(Ayaz et al., 2003; Connor et al., 1994; Gencay and Liu, 1997; Mandic and Chambers, 2001):

fn(t) =
H∑

i=1

Wiϕ(t) + bi (t) (27)
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Fig. 2 Elman RNNs (Elman, 1990)

where Wi are weights between the hidden and the output layer; ϕ(t) is the output function of

hidden neurons, which is computed as

ϕi (t) = g

(
P∑

j=1

vi j x j (t) +
q∑

k=1

H∑
m=1

wikmϕm(t − k) + bi (t)

)
(28)

where vi j are weights between the input and the hidden layer; wikmare weights between the

context and the hidden layer with delay k periods; q is the total numbers of the context layer

of past output data.

Back-propagation is a procedure to obtain gradients for adapting weights of a neural

network. Back-propagation algorithm presents as follows. First, the output of the n th neuron

in Equation (27) is rewritten as

fn(t) = h(xT (t) φ (t)) (29)

where h(·) is nonlinearity function of xT (t)and fn(t); xT (t) = [x1(t), . . . , xP (t)]T is the input

vector; φ(t) = [φ1(t), . . . φP (t)]T is the weight vector, then, a cost function is proposed to be

the instantaneous performance index,

J (φ(t)) = 1

2
[d(t) − fn(t)]2 = 1

2

[
d(t) − h(xT (t)φ(t))

]2
(30)

where d(t) = [d1(t), . . . , dP (t)]T is the desired output.

Secondly, the instantaneous output error at the output neuron and revised weight vector

in the next moment are presented as Equations (31) and (32) respectively.

e(t) = d(t) − fn(t))) = d(t) − h(xT (t)φ(t))) (31)

φ(t + 1) = φ(t) − η∇φ J (φ(t))) (32)

Springer



506 Water Resour Manage (2007) 21:495–513

where η is the learning rate.

Third, the gradient ∇φ J (φ(t)) can be calculated as

∇φ J (φ(t)) = ∂ J (φ(t)

∂φ(t)
= e(t) × ∂e(t)

∂φ(t)
= −e(t)h′(xT (t)φ(t))x(t) (33)

where h′(·) is the first derivation of the nonlinearity h(·). Finally, the weight is revised as

φ(t + 1) = φ(t) + ηe(t)h′(xT (t)φ(t))x(t) (34)

Finally, by substituting Equation (34) into Equation (29), the output value of the n-th

neuron is obtained.

6. Experimental setup and simulation results

The rainfall data of Wu-Tu watershed were used as a case study for developing rainfall

forecasting model in this investigation. The Wu-Tu watershed is located in northern Taiwan

and its size is about 204 km2. Within the watershed, the annual average rainfall is about

2,500 mm. There are three telemetric rain gauges (Wu-Tu, Jui-Fang, and Huo-Shao-Liao)

and one discharge site (Wu-Tu) within the Wu-Tu Watershed. Locations of these gauges

are shown in Figure 3. Hourly volumes of rainfall (from August 1985 to August 1997) of

the three rain gauges are served as experimental data in this study. During this period, nine

typhoon events occurred. In this investigation, the hourly volumes of rainfall brought by

typhoons Nelson, Abby, and Sarah were employed as training data set. The validation data

set included the hourly volumes of rainfall brought by typhoons Ruth, Polly, and Seth. The

hourly volumes of rainfall brought by the other three typhoons served as the testing data set.

Table 1 shows the experimental data used in this investigation.

Fig. 3 The Wu-Tu watershed in northern Taiwan
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Table 1 Information of typhoon selected from Wu-Tu discharge site

Date Rainfall Rainfall

Number Name (yyyy/mm/dd) duration(h) depth (mm) Remark

1 Nelson 1985/08/22 41 341.4 Training data set

2 Abby 1986/09/17 88 521.3

3 Sarah 1989/09/10 71 322.5

4 Ruth 1991/10/28 72 448.6 Validation data set

5 Polly 1992/08/29 85 500.6

6 Seth 1994/10/09 49 300.7

7 Herb 1996/07/31 43 313.6 Testing data set

8 Zane 1996/09/27 77 440.6

9 Winnie 1997/08/17 47 343.5

6.1. Measurement of forecasting accuracy

The normalized mean squared error (NMSE), as given by Equation (18), was used as the

measurement of forecasting accuracy. Additionally, the accurate efficiency was measured by

the coefficient of efficiency (CE) and the coefficient of correlation (CC), given by Equation

(35) and Equation (36) respectively. The values of NMSE indicate the deviations between

actual values and forecast values. The maximum values of CE and CC are one. The CE

measures the efficiency of the forecasting model. The larger CE means the forecasting model

is more efficient. The higher values of CC indicate that the proposed model can capture the

tendency of the forecasting data.

CE = 1 −
∑n

i=1 (ai − fi )
2∑n

i=1 (ai − ā)2
(35)

CC =
∑n

i=1 (ai − ā)
(

fi − f̄
)√∑n

i=1 (ai − ā)2 ∗ ∑n
i=1

(
fi − f̄

)2
(36)

where ai and f i represent the actual and forecast volumes of rainfall, respectively; ā
and f̄ represent the actual and forecast mean volumes of rainfall, respectively; and n is the

number of forecasting periods.

6.2. Parameter determination of different models and forecasting results

In this investigation, a rolling-based forecasting procedure was conducted and a one-hour-

ahead forecasting policy was adopted. Based on the forecasting policy, several types of

data-rolling are considered as a time series to feed into the SVRSA model in for forecasting

rainfall depth in the next hour. In the training stage, the rainfall data contains three typhoon

events, the number of rainfall data fed into SVRSA model is designed by considering the

following two issues: the capture of rainfall data pattern from each typhoon event, and

prevention of the over-fitting problem. Hence, the number of rainfall data fed into SVRSA

model equals to the total rainfall hours of the previous two typhoons (129 rainfall data) or one

typhoon (41 rainfall data). Table 2 shows parameters of SVRSA models and forecast results.

It is illustrated that feeding SVRSA model by 129 rainfall data provides a smaller NMSE

value in the testing stage. Figures 4–6 compare the actual rainfall values and one-hour ahead

forecasting values for training data, validation data and testing data, respectively.
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Table 2 Forecasting results and associated parameters of the SVRSA model

Parameters
Number of NMSE of NMSE of NMSE of

input data σ C ε training validation testing

41∗ 0.35515 17.230 0.65167 1.1870 0.7032 0.9948

129∗∗ 0.05206 28.867 0.87811 1.1529 0.4112 0.3963

∗: Including the total rainfall durations of one typhoon event, Nelson, in training stage.
∗∗Including the total rainfall durations of two typhoon events, Nelson and Abby, in training
stage.

Table 3 Forecasting measurements and parameters of four models

Parameters NMSE CE CC

SVRSA model σ = 0.05206, C= 28.867 ε = 0.87811 0.3963 0.6037 0.7988

HW model α = 0.45, β=0.035 0.4758 0.5242 0.7459

SHW model L = 41,α=0.51 β = 0.03, γ = 0.1 0.4633 0.5367 0.7892

RNN model Number of nodes in the hidden layer = 3 0.4435 0.5538 0.8937

Fig. 4 Actual and forecasting amounts of rainfall for training data (SVRSA model)

For the Holt-Winters method, the α value and β value are 0.45 and 0.035 respectively.

The appropriate parameters for the SHW models are 41, 0.51, 0.03, and 0.1 for L , α, β and γ

correspondingly. The number of nodes in the hidden layer is used as a validation parameter

of the RNN models. The most suitable number of hidden nodes of a RNN model is three.

Figures 7–9 show the one-hour ahead forecasting rainfall values of the HW model, the SHW

model, and the RNN model respectively. For the SVRSA model, parameters resulting in the

minimum validation NMSE value were selected as the most suitable model for the present

example.

Table 3 lists the forecasting measurements and suitable parameters for the four mod-

els and illustrates the forecasting accuracy and efficiency of the four models in terms of
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Fig. 5 Actual and forecasting amounts of rainfall for validation data (SVRSA model)

Fig. 6 Actual and forecasting amounts of rainfall for testing data (SVRSA model)

various evaluation indices. For NMSE accuracy index, the proposed SVRSA model with

satisfactory forecasting performance and is capable to be employed to forecast rainfall

depth during typhoon period. Similarly, for CE efficiency index, the proposed SVRSA

model is also deserved to be confident. For CC efficiency index, the forecasting rain-

fall depth values from SVRSA model have higher correlation relationship with actual

rainfall depth values than both HW and SHW models. However, RNN model has a higher
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Fig. 7 Actual and forecasting amounts of rainfall for testing data (HW model)

Fig. 8 Actual and forecasting amounts of rainfall for testing data (SHW model)

CC than the SVRSA model. In addition, it is observed that SVRSA model can cap-

ture the data pattern of rainfall during the peak periods. However, the other three mod-

els can not follow the data pattern successfully. Therefore, the nonlinear mapping abil-

ity and the proper selection of SVR parameters make the SVRSA successful in rainfall

forecasting.
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Fig. 9 Actual and forecasting amounts of rainfall for testing data (RNN model)

7. Conclusions

To avoid loss of human lives and properties, accurate rainfall forecasting is crucial for a trop-

ical country with frequent-unanticipated flash floods, like Taiwan. The historical rainfall data

of Wu-Tu watershed in northern Taiwan show a fluctuating trend, particularly during typhoon

seasons. Although this is a common phenomenon in tropical countries, over-prediction or

under-prediction amounts of rainfall influence a lot the social capability and costs in precau-

tion against flash floods. This study introduces a novel forecasting technique, SVRSA, for

forecasting amounts of rainfall during typhoon seasons in northern Taiwan. The experimen-

tal results reveal that the SVRSA model is a promising alternative in forecasting amounts

of rainfall. Reasons for the superior performance of the SVRSA model can be as follows.

First, the SVR conducts structural risk minimization rather than minimizing the training er-

rors. Therefore, the SVR model has good generalization ability. Second, simulated annealing

algorithms can select the three parameters of the SVRSA model properly to improve the

forecasting accuracy.

This investigation demonstrates that the proposed SVRSA model offers a valid alterna-

tive for application in hydrology. In the future, more other meteorological variables during

typhoon seasons, such as atmospheric pressure, temperature, convection condition as well as

wind speed and direction, can be considered in the SVRSA model for forecasting amounts

of rainfall. In addition, some other optimization techniques, such as tabu search algorithms,

ant search algorithms, immune algorithms, particle swarm optimization algorithms, can be

employed to select the SVR parameters. Furthermore, the relation between the forecasting

performance by using different optimization techniques in determining SVR parameters and

the types of forecasting data will be a challenging issue for future study.
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